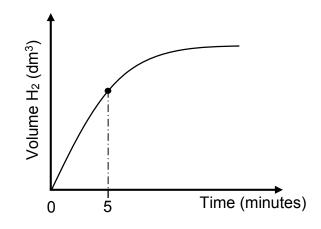
(2)

QUESTION 5 (Start on a new page.)

5.1 The reaction between pure aluminium, Al(s), and EXCESS hydrochloric acid, HCl(aq), is used to investigate the factors that affect the rate of a reaction.

The balanced equation for the reaction is:


$$2Al(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2(g)$$

5.1.1 Define the term *reaction rate*.

EXPERIMENT I

In this experiment, 1 mol·dm⁻³ HCl solution reacts with a 0,5 g Al strip from an aluminium roll at room temperature.

The graph of volume $H_2(g)$ versus time for this experiment, not drawn to scale, is shown below.

5.1.2 For the time interval t = 0 to t = 5 minutes, the average reaction rate for the formation of H₂(g) is 0,033 dm³·min⁻¹.

Calculate the mass of A*l* present in the container at t = 5 minutes. Take the molar gas volume as 24,5 dm³·mol⁻¹.

Assume that the concentration of the HCl(aq) stays constant for the duration of the reaction.

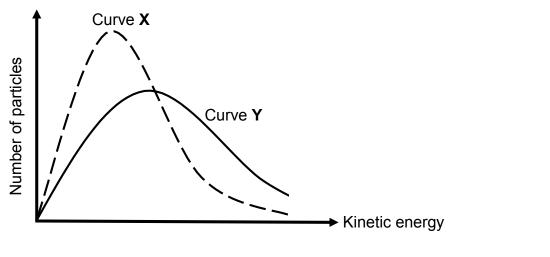
5.1.3 Use the collision theory to explain the change in the reaction rate from t = 0 to t = 5 minutes. (4)

EXPERIMENT II

Experiment I is repeated using a 2 mol·dm⁻³ HCl solution.

5.1.4 Redraw the above graph (NO numerical values need to be shown) in your ANSWER BOOK and label the curve **A**. On the same set of axes, draw the curve that will be obtained for Experiment II. Label this as curve **B**.

(2)

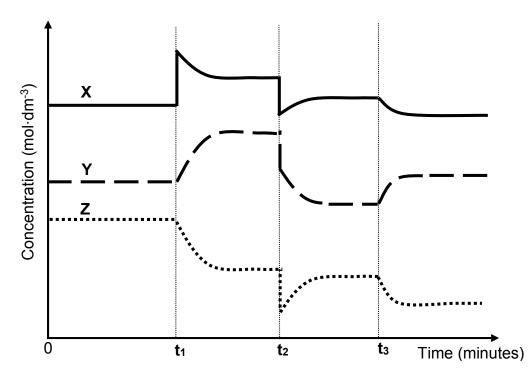

(6)

(1)

EXPERIMENT III

Experiment I is repeated using 0,5 g pure powdered Al.

- 5.1.5 How will the volume of H₂(g) produced in Experiment III compare to that in Experiment I? Choose from GREATER THAN, LESS THAN or EQUAL TO.
- 5.2 Curve **X** is the Maxwell Boltzmann distribution curve for a reaction under a set of reaction conditions. A change was made to one of the reaction conditions to obtain curve **Y**.


- 5.2.1 What change was made to obtain curve **Y**? (1)
- 5.2.2 Give a reason for the answer to QUESTION 5.2.1. (1)
 [17]

QUESTION 6 (Start on a new page.)

6.1 The reaction of carbon monoxide gas, CO(g), with oxygen gas, O₂(g), is investigated. The reaction reaches equilibrium in a closed container at constant temperature T °C, according to the balanced equation:

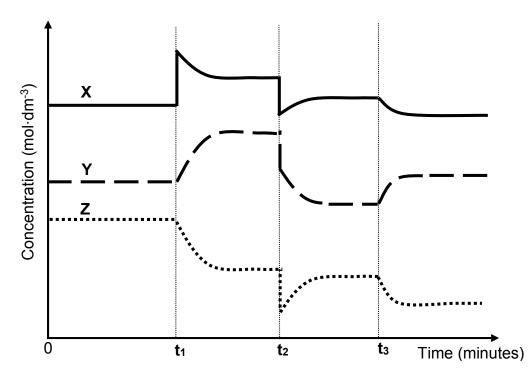
 $2CO(g) + O_2(g) \rightleftharpoons 2CO_2(g) \quad \Delta H < 0$

Changes to the conditions of equilibrium are made at different times. The graph shows the results obtained. X, Y and Z represent the gases in the above reaction.

6.1.1 Define the term *chemical equilibrium*.

(2)

Use the graph to answer the questions below.


6.1.2	At t_1 , oxygen, O ₂ (g), was added to the container. Write down the letter that represents O ₂ (g). Choose from X , Y or Z .				
6.1.3	At t ₂ , the pressure is adjusted by changing the volume of the container. Was the pressure INCREASED or DECREASED?				
6.1.4	Give a reason for the answer to QUESTION 6.1.3.				
6.1.5	Write down the NAME or FORMULA of the gas that is represented by the letter Z .	(1)			
6.1.6	Give a reason for the answer to QUESTION 6.1.5.				
6.1.7	What change in temperature is made at t_3 ? Choose between INCREASED or DECREASED.				
6.1.8	Use Le Chatelier's principle to explain the answer to QUESTION 6.1.7.	(3)			

QUESTION 6 (Start on a new page.)

6.1 The reaction of carbon monoxide gas, CO(g), with oxygen gas, O₂(g), is investigated. The reaction reaches equilibrium in a closed container at constant temperature T °C, according to the balanced equation:

 $2CO(g) + O_2(g) \rightleftharpoons 2CO_2(g) \quad \Delta H < 0$

Changes to the conditions of equilibrium are made at different times. The graph shows the results obtained. X, Y and Z represent the gases in the above reaction.

6.1.1 Define the term *chemical equilibrium*.

(2)

Use the graph to answer the questions below.

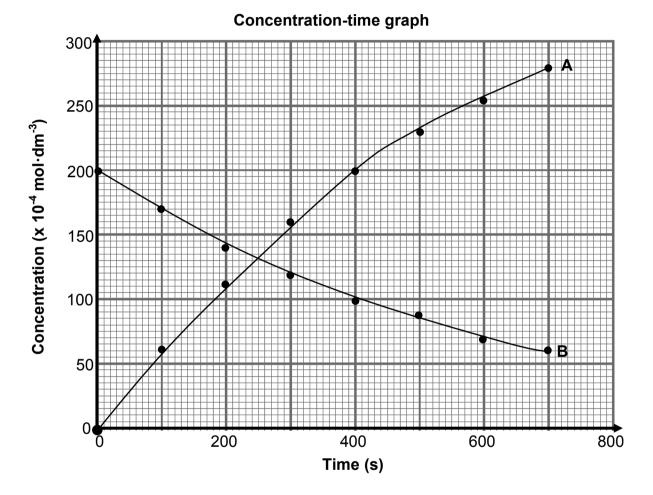
6.1.2	At t_1 , oxygen, O ₂ (g), was added to the container. Write down the letter that represents O ₂ (g). Choose from X , Y or Z .				
6.1.3	At t ₂ , the pressure is adjusted by changing the volume of the container. Was the pressure INCREASED or DECREASED?				
6.1.4	Give a reason for the answer to QUESTION 6.1.3.				
6.1.5	Write down the NAME or FORMULA of the gas that is represented by the letter Z .	(1)			
6.1.6	Give a reason for the answer to QUESTION 6.1.5.				
6.1.7	What change in temperature is made at t_3 ? Choose between INCREASED or DECREASED.				
6.1.8	Use Le Chatelier's principle to explain the answer to QUESTION 6.1.7.	(3)			

6.2 Carbon monoxide gas, CO(g), reacts with water vapour, H₂O(g), at T °C. The reaction reaches chemical equilibrium according to the balanced equation:

 $CO(g) + H_2O(g) \Rightarrow CO_2(g) + H_2(g)$

Initially, 0,6 moles of CO(g), 0,6 moles of H₂O(g), 0,1 moles of carbon dioxide gas, CO₂(g), and 0,1 moles of hydrogen gas, H₂(g), were mixed and sealed in a 2 dm³ flask.

If the equilibrium constant, K_c , for this reaction at T °C is 4, calculate the mass of CO(g) present in the flask at equilibrium.


(9) **[20]** 10 SC/NSC

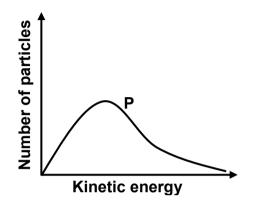
QUESTION 5 (Start on a new page.)

Consider the following decomposition reaction that takes place in a sealed 2 dm³ container:

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

The graph below shows how the concentrations of $N_2O_5(g)$ and $NO_2(g)$ change with time.

5.1 Refer to the graph above and give a reason why curve **A** represents the change in the concentration of $NO_2(g)$.


5.2 Consider the statement below:

The rate of decomposition of $N_2O_5(g)$ is half the rate of formation of $NO_2(g)$.

Is this statement TRUE or FALSE? Give a reason for the answer. (2)

(1)

- 5.3 Calculate the:
 - 5.3.1 Mass of $NO_2(g)$ present in the container at 400 s (4)
 - 5.3.2 Average rate of production of $O_2(g)$ in mol·dm⁻³·s⁻¹ in 700 s (4)
- 5.4 The Maxwell-Boltzmann distribution curve for the $N_2O_5(g)$ initially present in the container is shown below.

The initial concentration of the $N_2O_5(g)$ is now INCREASED.

5.4.1 Redraw the distribution curve above in the ANSWER BOOK and label this curve as **P**.

On the same set of axes, sketch the curve that will be obtained for the higher concentration of $N_2O_5(g)$. Label this curve as **Q**.

5.4.2 Will the rate of decomposition of $N_2O_5(g)$ at the higher concentration be HIGHER THAN, LOWER THAN or EQUAL TO the original rate of decomposition? Explain the answer using the collision theory.

(3) **[16]**

(2)

QUESTION 6 (Start on a new page.)

One mole of pure hydrogen iodide gas, HI(g), is sealed in a 1 dm³ container at 721 K. Equilibrium is reached according to the following balanced equation:

 $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$

It is found that 0,11 moles of $I_2(g)$ are present at equilibrium.

	6.3.3	Calculate the mass of HI(g) present at the new equilibrium at 850 K.	(8) [16]		
	6.3.2	Fully explain the answer to QUESTION 6.3.1.	(3)		
	6.3.1	Is the forward reaction EXOTHERMIC or ENDOTHERMIC?	(1)		
		perature of the container is now increased to 850 K. ilibrium constant, K _c , at 850 K is 0,09.			
6.3	The equilibrium constant, K_c , at 721 K is 0,02.				
	6.2.2	HI(g)	(1)		
	6.2.1	H ₂ (g)	(1)		
6.2	Determine the number of moles of EACH of the following at equilibrium:				
6.1	State Le Chatelier's principle.				